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Abstract.  

Software systems are increasingly becoming distributed, open and ubiquitous assets. While open 
system components are often autonomous, they behave unpredictably when unforeseen situations arise.  
Taming this uncertainty is a key issue for dependable open software development. This work proposes   
law enforcement approach that uses fault tolerant strategies to develop dependable open systems. 
Despite all the research done in the last years on the development of fault-tolerant applications and of 
approaches to enforce secure interaction protocols in multi-agent systems, there is no mechanism which 
uses the law elements of interaction’s control which improves the agent criticality analysis. As we will 
see, this mechanism would increase dependability of those systems. Thus it is proposed a solution to 
achieve it through the integration of the DimaX framework, which is a framework for dynamic 
replication, and the XMLaw, which is composed by a declarative language for specifying the norms of 
the systems and a framework for implementing the law enforcement approach for regulating agents’ 
interaction. 

1 Introduction 

Multi-Agent systems (MAS) are decentralized and self-organizing systems that consist of autonomous 
entities (agents) that solve tasks by cooperation [1]. The agents coordinate their actions in a decentralized 
manner by sending and receiving messages. The absence of centralized coordination data makes it hard to 
determine the current state of the systems and/or to predict the effects of actions. Moreover, agents are 
therefore faced with significant degrees of uncertainty for making decisions since it is very hard to devise 
all the possible situations that may arise in the execution context. Taming this uncertainty is a key issue for 
open software development. In such circumstances, reliability is a strategy for dealing with uncertainty 
associated with interactions in open systems [2]. 

However, in critical applications such as business environments or government agencies (hospitals, 
police, justice, etc.), the behavior of global system must be taken into account and structural characteristics 
of the domain have to be incorporated [3]. Concepts as organizational rules [4], norms and institutions 
[5][6], and social structures [7] arise from the idea that the effective engineering of MAS needs high-level, 
agent-independent concepts and abstractions that explicitly define the organization in which agents live [7]. 
These are the rules and global objectives that govern the activity of an enterprise, group, organization or 
nation. From the organizational point of view this creates a need to check conformance of the actual 
behavior of the society to the behavior desired by the organization [8]. Hence, these laws must be enforced 



to delimit tolerated autonomous behavior and are also used to foster the development of trusted systems. 
The bottom line is that laws are used to represent the valid interactions in open MAS applications [2]. 

Due to the need of enforcing the laws through the agents’ interaction, some works have appeared in the 
last years to propose mechanisms for regulating agent’s interactions in complex scenarios. Here we are 
going to use the approach proposed by [9] through XMLaw description language, which allows for the 
runtime enforcement of agents compliance based on a law-governed mechanism. 

Moreover, the dependability of a computing system is its ability to deliver service that can justifiably be 
trusted. Correct service is delivered when the service implements the system function. Considering that it is 
very hard to determine the state of autonomous systems due to the absence of centralized coordination data 
[11], there is the need to ascertain open multi-agent systems dependability, that is a justified trust that they 
will satisfactory perform their missions and not cause any catastrophes [10].  

Fault tolerance is said to be a useful technique to increase the reliability of a distributed system. 
Considering that an Open MAS is a special type of such systems, there is a need to study the particular 
characteristics of these Open MAS in order to reach higher degrees of dependability.  

The Agent Replication Technique, which is the act of creating one or more duplicates of one or more 
agents in a multi-agent system, seems to be an efficient way to achieve fault tolerance in an Open Multi-
agent System, since fault tolerance is generally implemented by error detection and subsequent system 
recovery. Hence we can increase the dependability of an Open MAS just by implementing the Agent 
Replication technique. It is also necessary that this approach should be dynamic and adaptative since this 
kind of Open MAS are very dynamics [12]. In this work, we choose to use the DimaX framework, which is 
a framework for dynamic replication of agents that ensure dependability as transparent as possible to the 
application. It focuses on scalability and adaptive for large-scale multi-agent systems. 

If our main goal is to arise as much as possible the dependability of multi-agent systems in order to 
guarantee a high degree of reliability of that kind of systems, a platform that integrate these two approaches 
(dependability achieved by fault tolerance and by governance of agents’ interaction) would be an efficient 
way of doing it. So, we can have a platform with high degree of dependability and a law-governed 
approach to improve the criticality analysis , which defines the number of agent's replicas, and at the same 
time we could provide the ability of monitoring and enforcing the behavior of agents through the 
enforcement of laws. 

Outline 

This paper is organized as follow: section 2 and 3 describes the context of this work. Section 2 describes 
the law enforcement mechanism works during the agents’ interactions and section 3 describes the types of 
failures that may occur in a MAS, the ones that this work addresses and the framework that we used in the 
integration which implements fault tolerance. Section 4 presents the problem description and section   
describes then the architecture that we developed to achieve the proposed solution for solving the problem 
description. 

2 Law-Governed Interaction 

As we have already seen, distributed software agents are independently implemented, i.e., the development 
takes place without a centralized control. In order to achieve a coherent system, we assume that every agent 
developer may have an a priori access to the open system specification, including the protocol description 
and the interaction laws. In this scenario, law-governed architectures can be designed to guarantee that the 
specifications will be obeyed. 

In this kind of architecture, a mediator is needed to intercept messages and interpret the laws that were 
previously described. Besides monitoring the conversation of agents, it is necessary to specify the 
interaction rules that will govern this mediation. In this section, we explain the description language 
XMLaw [9]. XMLaw is used to represent the interaction rules of an open system specification. Those rules 
are interpreted by a mechanism that at runtime is used to analyze the compliance of open MAS with 
interaction laws 



2.1 XMLaw Overview 

The model presented in this section is used to represent interactions in an open distributed environment. 
Basically, interactions should be analyzed, and after that, described using the concepts proposed in the 
model. Then, the concepts are mapped to a declarative language, called XMLaw. 

Interaction’s definitions are interpreted by a software framework that monitors components’ interaction 
and enforces the behavior specified on the language. Once interaction is specified and enforced, despite the 
autonomy of the agents , the system’s global behavior is better controlled and predicted. Interaction 
specification of a system is also called laws of a system. This is because besides the idea of specification 
itself, interactions are monitored and enforced. Then, they act as laws in the sense that describe what can be 
done, what cannot be done and what should be done.  

This model provides computational concepts that allow specify interaction laws in multi-agent systems. 
Most of this model was already reported in [25] and therefore the concepts are very briefly introduced in 
this paper to make it self-contained. 

The outer concept of this model is the LawOrganization. We can see this element as representing the 
interaction laws (or normative dimension) of a multi-agent organization. A LawOrganization is composed 
of scenes, clocks, norms and actions. Scenes are interaction contexts that can happen in an organization. 
They allow modularizing interaction breaking the interaction of the whole system in smaller parts. Clocks 
introduce global times which are shared by all scenes. 

Norms capture notions of permissions, obligations and prohibitions regarding agents’ interaction 
behavior. Actions can be viewed as a consequence of any interaction condition, for example, if an agent 
acquires an obligation, then the action ‘A’ should be executed. 

Scenes define an interaction protocol (from a global point of view), a set of norms and clocks that are 
only valid in the context of the scene. Furthermore, scenes also identify which agents are allowed to start or 
participate of the scene. Non-deterministic automatons, enhanced by the constraint element and by the 
possibility of integration with the other elements from the model, represent interaction protocols. 
Constraints are used as conditional firing of protocol transitions allowing to check complex conditions 
based on the message contents. 

To achieve lower coupling levels among these elements, there is also a dynamic model based on events 
that reify the relationships of the conceptual model in a flexible way. 

Events are the basis of the communication among law elements, that is, law elements dynamically relate 
with other elements through event notifications. Basically, we can understand the dynamic of the elements 
as a chain of causes and consequences, where an event can activate a law element; this law element could 
generate other events and so on. For example, the arrival of a message generates an event (message ar-
rival), this event may activate a transition (transition activation), transition in its turn may activate a clock 
(clock activation), which generates a (clock tick) event, and lastly it activates a norm (norm activation). 
Figure 1 shows this chain of causes and consequences, and Figure 2 summarizes all law elements that can 
generate and sense events. 

 

Fig. 1. Chain of Events 



A framework was developed to support the development of open distributed systems providing 
compliance with both the model of interactions proposed previously and the declarative language XMLaw. 
The fra mework has a set of modules that supports three types of users: (i) “Law developer” represents the 
developer responsible for specifying the laws, he must understand the application under construction, know 
the law con-cepts, and then, specify the laws for the application; (ii) “Agent developer” represents the 
developer responsible for building the agents of a multi-agent system, those developers know about the 
existence of the laws and should design the agents in compliance with them; (iii) “Software infrastructure 
developer” deals with law enforcement soft-ware support. Sometimes there is no software infrastructure 
that implements the law enforcement mechanism or the existent infrastructures are not suitable for the 
systems that are under development. In these cases, software infrastructure developers should modify the 
existent infrastructure, or even construct a new one.  

The framework provides support for each one of those developers. First, it is provided a declarative 
language, the XMLaw, for law developers, which allows the specification and maintenance of the 
interactions of multi-agent systems. XMLaw specifications are interpreted and enforced by the law 
enforcement framework. The framework provides this software support, which contains a number of 
hotspots that can be extended by software infrastructure developers. Lastly, agent developers are provided 
with classes and interfaces that support building agents integrated to the law enforcement software. 

Most of the framework is implemented as mediator agent modules. The mediator agent monitors all 
interactions and makes sure that interactions are compliant with the specifications. The mediator performs a 
number of activities. First, the mediator waits for receiving messages. Once a message arrived, it checks if 
the message belongs to the mediator protocol. If it does, the mediator proceeds with the protocol execution. 
Otherwise, if the message belongs to some agent conversation, the mediator starts the process of enforcing, 
and if the laws allow, the message is redirected to the addressee agent. This sequence of activities is 
repeated while the mediator agent is running. 

The proposal here is not to detail the framework, so more details can be found in [26]. Next sections will 
address both DimaX and XMLaw, so it is very important that all the concepts are restrained so a better 
exploitation will be done. 

3 Fault Tolerance for Multi-Agent Systems 

There are four essential characteristics of a multi-agent system: a MAS is composed of autonomous 
software agents, a MAS has no single point of control, a MAS interacts with a dynamic environment, and 
the agents within a MAS are social (agents communicate and interact with each other and may form 
relationships). 

All these situations contribute to a failure state. A failu re occurs when the system produces results that 
do not meet the speci?ed requirements. A fault is de?ned to be a defect within a component of a MAS that 
may lead to a failure. There are several faults that may occur. For instance, we can have program bugs, 
which are errors in programming that are not detected by system testing. We can also have unforeseen 
states, i.e, the programming does not handle a particular state and testing team did not test for this state. We 

Fig. 2. Law Elements that generates/senses events 

 



can have processor faults, which can be a system crash or a shortage of system resources. There would be 
communication faults which can occur due to slow downs, failures or other proble ms with the 
communication links; And, finally, unwanted emerging behaviour, i. e, system behaviour which is not 
predicted. Emerging behaviour may be bene?cial or detrimental. When a fault occurs  in a MAS, 
interactions between agents may cause the fault to spread throughout the system in unpredictable ways. 

Several approaches ([17], [18], [19], [20], [21]) address the multi-faced problem of fault tolerance in 
multi-agent systems. These approaches can be classified in two main categories. The first category focuses 
especially on the reliability of an agent within a multi-agent system. This approach handles the serious 
problems of communication, interaction and coordination of agents with the other agents of the system 
[12]. The second category addresses the difficulties of making reliable mobile agents which are more 
exposed to security problems [16]. This second category is beyond the scope of this work. The main limit 
of current replication techniques is that most of them are not quite suitable for implementing adaptive 
replication mechanisms because in most cases, replication is decided by the programmer and applied 
statically, before the application starts. This works fine because the criticality of components (e.g., main 
servers) may be well identified and remains stable during the application session. Opposite to that, in the 
case of dynamic and adaptive multi-agent applications, the criticality of agents may evolve dynamically 
during the course of computation. Moreover, the available resources are often limited. Thus, simultaneous 
replication of all the components of a large-scale system is not feasible [13]. 

Considering that limitation, a specific and novel framework for replication, named DimaX (see details 
en next section), which allows dynamic replication and dynamic adaptation of the replication policy (e.g., 
passive to active, changing the number of replicas) was designed. It was designed to easily integrate 
various agent architectures, and the mechanisms that ensure dependability are kept as transparent as 
possible to the application. 

Basically, there are several approaches to fault tolerance in MASs that can be classified in two groups to 
know: agent-centric approaches, which build fault tolerance into the agents; and system-centric approaches, 
which move the monitoring and fault recovering into a separate software entity. Agent replication 
technique uses aspects of both agent-centric and sys-tem-centric approaches. Each agent must have the 
capability to utilize replication [22]. 

The replication technique is already old to the people who work with fault tolerance in distributed 
systems. Then the agent replication would be the act of creating one or more replicas of one or more agents. 
The replication degree, or number of each agent replica, will be the criticality degree of it and the how 
much complex it is to add or remove members in the existent group.  

There are two main types of replication protocol: active and passive protocols. The first one occurs when 
all replicas process concurrently all input messages. And the second one occurs when only one of the 
replicas processes all input messages and periodically transmits its current state to the other replicas in 
order to maintain consistency [12]. 

The two replication strategies (active and passive) can be used to replicate agents. Active replication 
provides a fast recovery delay. So, it is dedicated to applications with real-time constraints. Moreover, 
passive replication provides a low overhead under failure but it does not provide short recovery delays. So, 
the choice of the most suitable strategy relies on the environment context. Active replication must be 
chosen when the failure rate becomes too high or when the application has real-time constraints. Otherwise, 
passive replication is most suitable. 

In most multi-agent applications, the environment context is very dynamic. So, the choice of the 
replication strategy of each component, which relies on a part of this environment, must be determined 
dynamically and adapted to the environment changes. 

Moreover, a multi-agent system component which can be very critical at a moment can loose its 
criticality later. If we consider the replication cost which is very high, the number of replicas of these 
components must be therefore dynamically updated. 

Next sub-section present an overview of DimaX framework and how it contributes to our work. 

3.1 DimaX Overview 

DimaX is the integration between DIMA[29] and DarX[30] [31]. DIMA and DarX  have been integrated to 
build a fault-tolerant multiagent platform. DimaX provides multi-agent systems with several services such 
as distribution, replication, and naming service [30]. In order to bene?t from fault tolerance mechanisms, 



the agent behavior is wrapped in a task of the DarX framework (see Figure 3). Moreover, for a dynamic 
control of replication, the monitoring architecture has been introduced. Figure 3 gives an overview of 
DimaX. 

 

Fig. 3. DimaX's Overview  

Consider a distributed system consisting of a ?nite set of agents Ai = {A1,A2,. . .,An} that are spread 
through a network. These agents communicate only by sending and receiving messages. DarX provides 
global naming, and each agent has a global name which is independent of the current location of its 
replicas. The underlying system allows handling the agent’s execution and communication. 

The failure of a machine or a connection often involves the failure of the associated DarX server. 
However, in this  solution the fault tolerance protocols are agent-dependent, and not place-dependent, i.e. 
the mechanisms built for providing the continuity of the computation are integrated in the replication 
groups, and not in the servers. For instance, the monitoring agents are built as active components associated 
to the domain agents. 

Moreover, DarX provided a fault-detection mechanism. A machine crash - server failure - is handled in 
three steps within every replication group: 
− detection of a n eventual failure within the group, 
− evaluation of the context: new criticality, leader failure, ... 
− recovery: If the missing replica was the group leader, a new one is elected and an agent monitor is 

automatically activated. In the other case, it depends on the evaluation; a new follower/backup may or 
may not be instantiated. 

Obviously, if a leader without any follower/backup fails, then it will not be recovered. This derives from 
the original assumptions made: the criticality of an agent evolves during the computation, and there are 
phases when an agent need not be fault-tolerant. 

To validate DimaX, several series of experiments were realized. Based on that, we opted for this 
framework to build our solution. Further details about DimaX implementation and the experiments can be 
found in [13], [23]. 

 



4 The Problem Description 

To illustrate a problem about how to dynamically calculate the agent criticality considering the 
organizational structures, we will describe a negotiation scene based on FIPA-CONTRACT-NET [27], 
which is represented in figure 4. The goal is to discover how the elements of the XMLaw could improve 
the agent criticality analysis that is done by DimaX. 

 
Fig. 4. FIPA CONTRACT-NET PROTOCOL 

Basically, the Initiator solicits m proposals from other agents by issuing a call for proposals (cfp) act, 
which specifies the task. Participants receiving the call for proposals are viewed as potential contractors 
and are able to generate n responses. Of these, j are proposals to perform the task, specified as propose 
acts.  

The Participant’s proposal includes the preconditions that the Participant is setting out for the task, 
which may be the price, time when the task will be done, etc. Alternatively, the i=n-j Participants may 
refuse to propose. Once the deadline passes, the Initiator evaluates the received j proposals and selects 
agents to perform the task; one, several or no agents may be chosen. The l agents of the selected proposal(s) 
will be sent an accept-proposal act and the remaining k agents will receive a reject-proposal act. The 
proposals are binding on the Partic ipant, so that once the Initiator accepts the proposal, the Participant 
acquires a commitment to perform the task. Once the Participant has completed the task, it sends a 
completion message to the Initiator in the form of an inform-done or a more explanatory version in the 
form of an inform-result. However, if the Participant fails to complete the task, a failure message is sent.  

Now, suppose that this protocol was described as a state machine (figure 5) where Si are the protocol’s 
states during its execution and the clocks’ representation are the clocks activation and deactivation for each 
+ or -, respectively. The protocol starts with the state S0 when the Initiator solicits m proposals from other 
agents and it ends with the states S4, or S5, or S7, it depends on the protocol’s flow. 



 
Fig. 5. Contract -Net State Machine 

Now, considering this representation we are going to map another negotiation scene in other to check how 
the criticality of the agent that is executing the protocol vary. Then suppose the following situation: a 
customer starts a negotiation sending a proposal for a book to a seller. He informs the maximum price that 
he will pay for the book. The seller can accept with a proposal or can refuse it. If he accepts, he can send 
proposals with lesser or equal price informed by the customer. When the customer receives the proposal, he 
has 20 seconds to decide if he will accept it or not. After 20 seconds, if the customer hasn’t answered the 
seller, he can sell the product to another customer. Otherwise the seller is not allowed to sell it to anybody 
else. If the customer refuses it, the seller can re-propose another price. If the customer accepts it, the seller 
informs the bank where the payment must be done. Then the customer has the obligation of paying for the 
product and of informing the number of the voucher to the seller. The scene ends then when the customer 
informs that paid it with the voucher number. 

Figure 6 shows the state machines of the negotiation protocol and all XMLaw elements (clock and 
norm) activated during its execution. 

 

Fig. 6. Negotiation Scene Description 

To summarize the protocol of the negotiation Scene Description, we have: 
• From state S0 to S1: the customer starts a negotiation sending a proposal for a book to a seller (cfp 

message). 
• From state S1 to S2: the seller accepts  the customer’s proposal. He sends proposals with lesser or equal 

price informed by the customer (propose message). This transition activates the clock and the customer 
has 20 seconds to answer the seller. 



• From state S1 to S6: the seller refuses the customer’s proposal  (refuse message) and the protocol ends. 
• From state S2 to S3: the customer accepts the seller’s proposal before the 20 seconds (accept message). 
• From state S2 to S7: the customer refuses the seller’s proposal before the 20 seconds  (refuse message). 
• From state S7 to S2: the seller proposes the customer again with another price  (propose message) and 

the clock is activated again. 
• From state S2 to S8: the customer doesn’t answer the seller and the seller informs the customer that he 

can offer the book to another customer  (inform message) and the protocols ends. 
• From state S3 to S4: the seller informs the customer the bank where he has to pay for the book  (inform 

message) and he has the obligation to pay in order to receive the book (norm activation).  
• From state S4 to S5: the customer informs the seller the voucher  (inform message) and has the 

permission the receive the book. The protocol ends. 
If we consider that when an event (as clock activation/deactivation, norm activation/deactivation, etc.) 
occurs during the scene execution the agent critilicality can increase or decrease, since the agent becomes 
more or less important, each element should be analyzed in order to calculate it in the best way. Moreover, 
another elements and events that might not be handled by XMLaw should be analyzed in order to evaluate 
how it could influence the agent criticality analysis. For example, when an agent starts playing a role its 
criticality may increase or decrease. 

Fig. 7. Criticality Analysis 

 
In the context of the negotiation scene, when the customer have to answer the seller if he will accept his 
proposal or refuse it, his criticality may increase, since that agent became very important to the seller and 
should not crush, for exa mple  (it is important to point out that this criteria depends on the domain analysis). 
So, just to make it more clear, if we could classify the criticality of the agent in three levels, we would have 
a low (L), medium (M) or high (H) criticality level during the scene execution. Figure 7 shows how it could 
vary in a time period. Note that we replaced the status representation (s0, s1, …, s9) by the criticality level 
representation (L, M or H). From s1 to s2 states the customer criticality level increased from low to 
medium since the clock activation event was fired. From s2 to s8 or s7 states it decreased since the clock 
deactivation event was fired. From s2 to s3 states it increased even more going from medium to high since 
the customer has the obligation of paying for the product. Now, if we analyze the seller criticality during 
the scene execution, we can perceive that from s1 to s2 states its criticality level increased since the 
customer has called him for a proposal, and then he has to answer him.  

The main questions which arise from that analysis are: 



• How and which elements of the XMLaw could improve the agent criticality analysis that is done by 
DimaX? 

• How can we do it in the best way considering coupling, modularity and reuse? 
Next sections will describe the expected contributions as a consequence of answering those questions and 
how to solve it. 

5 The Proposed Solution 

In order to integrate the XMLaw and DimaX it was necessary to extend both of them. First we analyzed 
XMLaw and studied which elements should be inserted, wh ich events should be sensed by the new 
elements and so on. It was not a trivial work considering that XMLaw is not an extensible framework for 
adding new elements or generating new events. Until now, it is easy to instantiate it but not to extend it. 
After that, we analyzed how to integrate it with Dima X and how to extend the criticality analysis done by 
DimaX. 

In this section we will describe the proposed solution first from the XMLaw point of view, and second 
from the DimaX point of vie w. 

5.1 XMLaw Extensions 

The XMLaw conceptual model is composed by concepts which allow representing agents’ interaction 
aspects. Among those concepts there are scenes, which group the interactions in modules; interaction 
protocols which define precisely the communication between agents; norms which hold the obligation, 
permission and prohibition concepts; clocks which add a temporal aspect into interactions allowing that a 
specific behavior may be valid during a period of time; and actions which allow executing automatic 
recovery code in the system in a fault case. 

We have extended XMLaw with two new elements: Role and Criticality Analysis (figure 8). XMLaw 
didn’t have the concept of Role. The roles played by agents had to be informed by themselves when they 
ask to enter in an organization and it was associated to a new name of the agent inside the organization.  

  
Fig. 8. XMLaw: New Conceptual Model 

With this new element (Role), when an agent asks to enter in an organization, it has to inform the role it 
wants to play and when a scene is executed, the agent, if accepted, will have to play its role. An 



organization has one or more roles to be played by agents and an agent can plays different roles in different 
organizations.  

The parser will read the law specification to generate the descriptors which are instantiated by the model 
level (figure 9). Then the mediator interacts with the model level in order to execute the law enforcement 
mechanism. 

 

Fig. 9. XMLaw Framework execution 

Each organization’s role has identification and a list of norms associated to its Rights. Some norms can 
be activated and/or deactivated according to agents’ right. Rights describe the permissions on the resources 
and services available in the environment and about the behavior of the agents. It can activate or deactivate 
some norms related to that role. 

The criticality analysis element has two elements: Increases and Decreases. The element Increases has 
the list of events that contribute for the increase of the agent criticality. And the element Decreases  has the 
list of events that contribute for the decrease of the agent criticality. Each element Increase and Decrease 
has as attributes: the event identification from the event that was fired, the event type from the event that 
was fired, the value which is a weight for the increase or decrease contribution of that event and the agent 
role identification which has all the references to the agent that will have its criticality updated in runtime. 

For the problem described in the fourth section, for example, the XMLaw specification for the Criticality 
Analysis is showed in  figure 10. When an agent starts playing the customer role, its criticality has to be 
recalculated and updated by a weight of 0.3. The same happens when an agent starts playing the seller role, 
its criticality has to be updated by a weight of 0.7. Those actions are executed when the role activation 
event is fired. 

Fig. 10. XMLaw specification example for Criticality Analysis  

From now on we are going to explain how we extended DimaX in order to improve its agent criticality 
calculation component. 

<CriticalityAnalysis> 
     <Increases> 
         <Increase event-id="customer" event-type="role_activation" value="0.3" role-id="customer" />  
         <Increase event-id="seller" event-type="role_activation" value ="0.7" role-id="seller" />  
         <Increase event-id="time-to-decide" event-type="clock_activation" value="0.5" role-id="customer" />  
         <Increase event-id="customer-payment-voucher" event -type="norm_activation" value=“0.8" role-id="customer" />  
      </Increases> 
      <Decreases> 
          <Decrease event-id="customer" event-type="role_deactivation " value ="0.3" role-id="customer" />  
          <Decrease event-id="seller" event -type="role_deactivation" value="0.7"  role-id="seller" />  
          <Decrease event-id="seller-permission-to-cancel" event- type="norm_activation" value="0.5" role-id="customer" />  
        </Decreases> 
</CriticalityAnalysis> 
 



5.2 DimaX Extensions 

In order to track the dynamical adoption of roles by agents, [12] proposed a role recognition method. 
Their approach is based on the observation of the agent execution and their interactions to recognize the 
roles of each agent and to evaluate its processing activity. This is used to dynamically compute the 
criticality of an agent through DarX (see third section). 

They consider two cases. In the ? rst case, each agent displays explicitly its roles or interaction protocols. 
The roles of each agent are thus easily deduced from its interaction events. In the second case, agents do 
not display their roles nor their interaction protocols. The agent roles are deduced from the interaction 
events by the role analysis module. In this analysis, attention is focused on the precise ordering of 
interaction events. The role analysis module captures and represents the set of interaction events resulting 
from the domain agent interactions (sent and received messages). These events are then used to determine 
the roles of the agent. 

The analysis of events and measures (system data and interaction events) provides two kinds of 
information: the roles and the degree of activity of each agent. This information is then processed by the 
agent’s criticality module. The latter relies on a table T that de?nes the weights of roles. This table is 
initialized by the application designer. 

The criticality of the agent Agent i which ful? lls the roles ri1 to him is computed as follow: 

 

 
 
 
Where a1 and a2 are the weights given to the two kinds of parameters (roles and degree of activity) 

which are introduced by the designer. 
For each Agent i, its criticality wi is used to compute the number of its replicas. An agent is replicated 

according to: 
− wi: its criticality, 
− W: the sum of the domain agents’ criticality, 
− rm: the minimum number of replicas which is introduced by the designer, 
− Rm: the available resources which de?ne the maximum number of possible simultaneous replicas. 

The number of replicas nbi of Agent i, which is used to update the number of replicas of the domain 
agent, can be determined as follows:  

 

 
In our work we have proposed the same reasoning for updating the agents’ criticality. For each value of 

increasing or decreasing agent’s criticality it is stored on a table T which de?nes the weights of its event. 
So, for example, in our problem of negotiation scene there would be three different tables: Tr, which 
defines the weights of role activation or deactivation; Tc, which defines the weights of clocks activation or 
deactivation; and Tn, which defines the weights of norms activation or deactivation. 

Then the criticality of the agent Agent i is computed as follow: 

 
Where a1, a2, a3 and a4 are the weights given to the four kinds of parameters (roles, clocks, norms and 

degree of activity) which are introduced by the designer by XMLaw specification. And awi is the degree of 
activity of the agent i. 

nbi(t) = rounded(rm + wi(t) *  Rm/W) 

wi(t) = (a1 * aggregation(T [rij]]j=1,m) + a2 * awi(t))/(a1 + a2) 

wi(t) = (a1 * aggregation ( Tr [rij] j=1,nr   )    + 

 a2 * aggregation ( Tc [cij] j=1,nc  )   + 
 a3 * aggregation ( Tn [nij] j=1,nn )  + 

 a4 * awi )) /  
∑

=

4

1i

ia



6 Conclusions and Future Work 

As we have already seen, the Open Multi-Agents System dependability can be achieved by fault tolerance. 
Among other existing fault tolerance techniques, there is a specific one that has been used in the recent 
years for achieving dependability in multi-agent systems. It is the Agent Replication technique. It has been 
used in several approaches and we used it in our work from the point of view of [6][16], since it is an 
effective way to implement fault tolerance for distributed systems. 

Furthermore, we used XMLaw because we expect that it also increases the reliability of Open Multi-
Agents System through a law enforcement approach for regulating agents’ interactions through a higher 
control. 

This work presents an extension of the XMLaw conceptual model described in Section 3 as a way of 
improving its dependability. We propose to use new elements that help specify the attributes concerning the 
agent criticality during its interaction with other agents. 

Moreover, considering that XMLaw framework is an event-based framework, other elements from the 
law’s specification that are perceived by events can improve the criticality analysis done by DimaX, which 
is used for calculating the agent number of replicas as clock activations, norms activations, etc. 

We extended XMLaw with two new elements that were introduced in the conceptual model: Role and 
Criticality Analysis. The first one (Role) was necessary because, until now, XMLaw does not have this 
element and it would be very difficult to associate an event activation to the agent without its reference. By 
doing that, we realized the need of associating specific norms to an agent when it starts playing a role or 
stops playing it. Then we created the concept of Rights, which describe the permissions on the resources 
and services available in the environment and about the behavior of the agents. It can activate or deactivate 
some  norms related to that role.  

The second element, Criticality Analysis, was introduced in order to monitor the events that should 
improve the criticality analysis done by DimaX. The events are divided into two groups: the ones that 
increase the agent’s criticality and the ones that decrease it. By doing that, any event considered important 
by the designer of the application while specifying its law can be taken into account. 
Second, it was necessary to extend DimaX in order to provide another algorithm for calculating the agent’s 
criticality. Considering the reasoning done by the Role Analysis described in [16], it was easy to extend it; 
instead of receiving one table with the weights, receiving tables related to XMLaw events with the weights. 
Two issues arose during the XMLaw instantiation. First, we perceived that XMLaw could be improved in 
order to make it more extensible. And second, the specification done by the designer of the events, which 
increase or decrease agent criticality, could be more appropriate if it wasn't so sensitive. In fact, we believe 
that it should be based on safety cases.  

Thus, we are going to study how dependability cases [28] can help the “Law developer” of critical 
systems, since it defines a bottom-up approach for specifying crit ical events. 
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